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1 Power Series and Analytic Functions

1.1 Power series

Lemma 1.1. Suppose we have

∞∑
k=1

∞∑
n=1

|an,k| <∞.

Then
∞∑
k=1

∞∑
n=1

an,k =
∞∑
n=1

∞∑
k=1

an,k,

and both sums converge absolutely.

Theorem 1.1. Given z0 ∈ C and a sequence (an) in C, let

S(z) =
∞∑
n=0

an(z − z0)n,

and let 1/R = lim sup |an|1/n ∈ [0,∞]. Then

1. if r < R, then S(z) converges uniformly and absolutely in {z : |z − z0| ≤ r}.

2. if |z − z0| > R, then S(z) does not converge.

Proof. In the first case, let r < s < R. Then there exists N0 such that n ≥ N0 =⇒
|an|1/n ≤ 1/s. Then |z − z0| ≤ r and n ≥ N0 imply that |an||z − z0|n ≤ (r/s)n. So∑

n≥N0

|an||z − z0|n ≤
∑
n≥N0

(r
s

)n
,

which converges because it is a geometric series with |r/s| < 1.
In the second case, |z − z0| > R =⇒ |z − z0| > s > R for some s. Then |an|1/n ≥ 1/s

infinitely often. Then |an||z−z0|n > 1 infinitely often. So the series does not converge.
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Theorem 1.2. Assume
∑∞

n=0 an(z − z0)n has radius of convergence R > 0, and let B =
{z : |z − z0| < R}. Set f(z) =

∑∞
n=0 an(z − z0)n for z ∈ B.

1. If z ∈ B, then there exists some sequence (cn) (dependent on z0) such that f(z) =∑∞
n=0 cn(z − z1)n when |z − z1| < R− |z − z0|.

2. f is complex differentiable in B, and f ′(z) =
∑∞

n=1 nan(z − z0)n−1.

Proof. Assume |z − z1| < r− |z − z0| < R− |z − z0|. Then |z − z0| < r− |z − z1| = s < R,
so f(z) =

∑∞
n=0 an(z − z0)n is bounded by

∞∑
n=0

|an| ||z − z0|+ |z − z1||n .

Since |z − z0|+ |z − z1| < r, this converges. So

f(z) =

∞∑
n=0

an

n∑
k=0

(z1 − z0)n−k(z − z1)k
(
n

k

)
︸ ︷︷ ︸

(z−z0)n

,

which converges absolutely because
∞∑
n=0

|an|
n∑

k=0

|z1 − z0|n−k|z − z1|k
(
n

k

)
<∞,

So by the lemma,

f(z) =

∞∑
k=0

( ∞∑
n=k

an

(
n

k

)
(z1 − z0)n−k

)
︸ ︷︷ ︸

ck

(z − z1)k

converges. Note that

c1 =

∞∑
n=1

nan(z1 − z0)n−1.

To prove part 2, without loss of generality, z1 = z0. Then

f(z) = f(z0) + a1(z − z0) +
∞∑
n=2

an(z − z0)n.

So f(z)− (f(z0) + a1(z − z0)) = o(|z − z0|) because

|f(z)− (f(z0) + a1(z − z0))|
|z − z0|

≤ |z − z0|
∞∑
n=2

an|z − z0|n−2.

Corollary 1.1. The functions f (k) are continuous and differentiable on B for all k ∈ N.

Proof. By induction. If f (k−1) satisfies the theorem, then f (k) is also a function satisfying
the conditions of the above theorem.
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1.2 Analytic and holomorphic functions

Let Ω ⊆ C be open and f : Ω→ C.

Definition 1.1. The function f is analytic on Ω (f ∈ A(Ω)) if for all z0 ∈ Ω there exists
B(z0) = {|z − z0| < Rz0} ⊆ Ω with Rz0 > 0 such that

f(z) =
∞∑
n=0

an(z0)(z − z0)n

for all z ∈ B(z0).

Recall that f is complex differentiable on Ω if f ′(z) exists for all z ∈ Ω.

Definition 1.2. The function f is holomorphic on Ω if f ′(z) exists for all z ∈ Ω and
z 7→ f ′(z) is continuous.

We have shown that analytic implies holomorphic and, by definition, it is clear that
holomorphic implies complex differentiable. We will later show that complex differentiable
implies analytic.

Example 1.1. The following function has R = 1.

∞∑
n=0

zn =
1

1− z
.

Example 1.2. The following function has R =∞:

E(z) =
∞∑
n=0

zn

n!
.

This function satisfies E(z + w) = E(z) · E(w) by the lemma. It also satisfies E(0) = 1,
E(−z) = 1/E(z), and E′(z) = E(z). We also get that E(t+ iθ) = E(t)E(iθ) with t, θ ∈ R.

Lemma 1.2. If y : R→ R satisfies y(0) = 1 and y′ = y, then y = E(t).

Proof. E(t) satisfies the differential equation. Note that

d

dt
(y(t)E(−t)) =

y′(t)

E(t)
− y(t)

E(t)
= 0,

so y = cE(t), and plugging in y(0)E(−0) = 1 gives us y = E(t).

If z = iθ with θ ∈ R, then E(z) = E(z). Define cosine and sine using E(iθ) = cos(θ) +
i sin(θ). Using sine and cosine angle addition identities (which we get from E(z + w) =
E(z) · E(w), we get E(iθ)E(−iθ) = 1. So |E(iθ)| = E(iθ)E(iθ) = 1.
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